@ ESPACE VECTORIEL K"

@ Les espaces vectoriels R” et C”

| Lespace vectoriel R"

Rl Définitions et rappels de cours

La plan R? Lespace R*
Le représente I'ensemble de tous les couples L’ représente I'ensemble de tous les ‘triplets‘
(x,y) réels. (z,y, 2) réels.
Avec z € R,y € R. Avecz e Ry e Retz € R.
R? = {(z,y) | * € R,y € R} R3 = {(z,y,2) |7 € R,y € R,z € R}

Le plan R" et les n-uplets

Le | plan R" | représente 'ensemble de tous les n-uplets de réels.

R™ ={(z1,22,...,2n | 21 ER, 20 €R,... ,x, € R}

Avec n € N*.
Un est une collection de n éléments (ol n € N*) noté (z1, s, ...,z,). Ces derniers sont représentés entre

parenthéses ou chaque éléments sont séparés par une virgule.

G J

O S © xcrple

On dit que deux n-uplet sont égaux lorsqu’ils ont le méme nombre d’éléments et = u=(1,2,3)
que chaque éléments sont égaux deux a deux. > p— (1’2’4)
Rigoureusement on note : T

) Bien quils aient la méme
(@122, @) = (Y1,Y2, -+, Yn, ) == (R =ny et Vi€ [Ling] 25 =y) taille, u # v car la troisiéme

> n-uplet de méme taille composannlaI d: u est diffé-
> Eléments ordonnés de la méme maniére rente de celle de .

A Dimension, vecteurs, composantes

Lentier n € N* est appelé de R". Les n-uplets contenus dans R™ sont appelés [ vecteurs .
Chaque vecteur contient n éléments appelés [ composantes .

Depuis le début, les vecteurs sont appelés n-uplets et sont notés (z1, zs, ..., x,), en général, les vecteurs sont écris en colonne.
Mais on gardera I'écriture en ligne pour un gain de place évident.
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| Opérations sur les vecteurs

Somme de deux vecteurs

Soient z = (21, x2,...,2,) €ty = (Y1, 2, - .., yn) deux vecteurs de R™

La somme de deux vecteurs peut se faire lorsqu’ils sont de la méme
taille. Ensuite, il suffit d’additionner leur i — éme composantes entre
elles. Avec i € [1;n].

Produit par un scalaire

Soient x = (x1, 232,...,2,) un vecteur de R” et A € R avec n € N.

G

RB Somme, produit et vecteur nul

_ Q Exemple

| Somme de deux vecteurs |
Les exemples suivants permettent de
simplement illustrer chaque opération.

avec n € N*,

8

x1 U1 T+ 0
10

T2 Y2 T2 + Y2 1| + =\

4

7

T, Yn Tn + Yn

Car les deux vecteurs n’ont pas le méme
nombre de coordonnées.

0 8 8
11+|1]=12
4 7 11

1 A1 Produit par un scalaire A
PR 3 12
4131 =112
o A 7 28
Vecteur nul
On appelle de R” le vecteur & n composantes nulles Vecteur nul de R
noté Or-~ : .
0 0
Ops =
On = .
0 0

J .

/

Propriété
SOMME DE VECTEURS

Soient n € N* et z, z,, xp, . quatres vecteurs de R".

Lo +Tp =2p + 24

B . +2)+ 20 =20+ (2 + 20)
z+0pn =0pn +x =2

n x+ (—x) = Ogn O0 —z = (—1)x

=—> COMMUTATIVITE
—> ASSOCIATIVITE
— ELEMENT NEUTRE

—> OPPOSE

Propriété

PRODUIT PAR UN SCALAIRE

Soient n € N*, z un vecteur de R" et A\, u € R.
1 NEONTEPYC)
E lr==x

=—> ASSOCIATIVITE ET COMMUTATIVITE

— ELEMENT NEUTRE
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Propriété -
" DISTRIBUTIVITE DE L’ ADDITION ET DU PRODUIT PAR UN SCALAIRE

Soient z,y e R" et A\, u € R.

Az +y) = z+ Ay A+ p)x = + px

R# Espace vectoriel

Les propriétés précédentes font de R™ muni de I'opération d’addition + et de produit par un scalaire - un [espace vectoriel]
qui est noté (R™, +, ).

Lespace vectoriel K”

O Remarque

Tout ce qui a été vu précédemment se généralise a des vecteurs a n composantes complexes.
Ainsi (C", +, -) est aussi un espace vectoriel.

RB Ensemble C”

Soit n € N*, C™ représente 'ensemble des vecteurs a n-composantes complexes.

C={(#1,22,...,2n) | 1 €C, 20 €C,... 2, €C}

B Lensemble K

Les différentes définitions et propriétés vues penda ere partie sont autant valable sur R que sur C.

Alors on désigne une lettre K pouvant étre R ou C.
K=R ou C

Ainsi lorsqu’on utilise K™ on désigne soit R™ soit C".

9 Combinaison linéaire et sous-espace vectoriel de K"

| Combinaison linéaire

On considére deux vecteurs u et v de K™ et A, 1 € K deux scalaires, on peut Y Exemple
alors construire un autre vecteur w tel que :
w = AT + pv 12 —9 3 +1 6
4 1 2

w est alors une combinaison linéaire de x et y.

RB Combinaison linéaire

Soient k € N* et ugy, ..., u, k—vecteurs de K". Cette expression peut s’écrire plus simplement :
On appelle | combinaison linéaire | de u,, . .., u; tous vec- .
teurs u de K™ de la forme : u= Y A\u;
i=1
U= AMUL + AaUs + ... + AU L . . .
u est une combinaison linéaire de u1, . . ., uy, Siil est possible
Ou M, N, ..., A\ €KL d’« écrire » u a partir des autres vecteurs.
. J
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La base canonique

_ Q Exemple R Base canonique de R"
Pour R?, la base connonique est donnée Pour tout k& € [1;n], on note e, le vecteur de R™ dont la k-iéme coor-
par : données est égale a 1 et toutes les autres sont nulles.
1y (o) (o) (o 1 1 0
ol |t] [of (o 0 1 0
Ey = , , , €1 = ,E69 = , ,En =
0 0 1 0
0 0 0 1 0 0 1
C’est donc a 4-uplet de vecteurs de R*. On appelle | base canonique de R” | le n-uplet (e1, ez, . . ., en).
AN 4 \§ J

| Sous-espace vectoriel de K"

Rl Sous-espace vectoriel de K”

Un sous-ensemble F' de K™ est un [sous-espace vectoriel de K" ] s’il vérifie les deux conditions suivantes :

W ogn e F Ul Me+yeFavecz,ye FetAeK

La seconde condition se résume en montrant que F est stable par combinaison lineaire .

Remarque

La rédaction et les exemples seront fais pendant les TDs, et la méthode sera donnée sur une fiche méthode ultérieurement.

B Sous-espace vectoriel engendré

Soit k € N* et uq, ..., u k-vecteurs de K.
Lensemble de toutes les combinaison linéaires de ug, . .., u; est un sous-espace vectoriel de K".
On I'appelle | sous-espace vectoriel engendré par u,, ..., ux | et on le note [ Vect(us, . .., ux) }

k
Vect(ul,...,uk) = { At | ()\1,)\2,...,)\]0 € ]Kk}
i=1

@ Méthode

Ecrire un sous-espace vectoriel avec la notation Vect

Soit F' un sous-espace vectoriel de K™, on cherche a montrer que
F =Vect(uy,...,uk)
n Si pas précisé, montrer que F est un sous-espace vectoriel.
] Montrer que F C Vect(us, . .., u).
! Montrer que Vect(uy, ..., ux) C F.
ﬂ Conclure.

Le fait de montrer I’'inclusion dans les 2 sens prouve I’égalité des deux ensembles.
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